Successive-Minima-Type Inequalities

نویسندگان

  • Ulrich Betke
  • Martin Henk
  • Jörg M. Wills
چکیده

We show analogues of Minkowski’s theorem on successive minima, where the volume is replaced by the lattice point enumerator. We further give analogous results to some recent theorems by Kannan and Lovász on covering minima.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Successive Minima and Radii

In this note we present inequalities relating the successive minima of a o-symmetric convex body and the successive inner and outer radii of the body. These inequalities build a bridge between known inequalities involving only either the successive minima or the successive radii.

متن کامل

Estimating Sizes of a Convex Body by Successive Diameters and Widths

The second theorem of Minkowski establishes a relation between the successive minima and the volume of a 0-symmetric convex body. Here we show corresponding inequalities for arbitrary convex bodies, where the successive minima are replaced by certain successive diameters and successive widths. We further give some applications of these results to successive radii, intrinsic volumes and the latt...

متن کامل

Generalized Bihari Type Integral Inequalities and the Corresponding Integral Equations

László Horváth Department of Mathematics, University of Pannonia, Egyetem u. 10, 8200 Veszprém, Hungary Correspondence should be addressed to László Horváth, [email protected] Received 2 February 2009; Accepted 23 June 2009 Recommended by Alberto Cabada We study some special nonlinear integral inequalities and the corresponding integral equations in measure spaces. They are significant gen...

متن کامل

Korkin-Zolotarev bases and successive minima of a lattice and its reciprocal lattice

Let Ai(L), Ai(L*) denote the successive minima of a lattice L and its reciprocal lattice L*, and let [b l , . . . , bn] be a basis of L that is reduced in the sense of Korkin and Zolotarev. We prove that [4/(/+ 3)]),i(L) 2 _< [bi[ 2 < [(i + 3)/4])~i(L) 2 and Ibil2An_i+l(L*) 2 <_ [(i + 3)/4][(n i + 4)/417~ 2, where "y~ =min(Tj : 1 < j _< n} and 7j denotes Hermite's constant. As a consequence the...

متن کامل

Systolic Inequalities and Massey Products in Simply-connected Manifolds

We show that the existence of a nontrivial Massey product in the cohomology ring H∗(X) imposes global constraints upon the Riemannian geometry of a manifold X . Namely, we exhibit a suitable systolic inequality, associated to such a product. This generalizes an inequality proved in collaboration with Y. Rudyak, in the case when X has unit Betti numbers. The inequality is a volume lower bound, a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Discrete & Computational Geometry

دوره 9  شماره 

صفحات  -

تاریخ انتشار 1993